15. \(x^2 + y^2 = 4 \)
\[
0^2 + 2^2 = 4 \quad (-2)^2 + 2^2 = 4 \quad \sqrt{2}^2 + \sqrt{2}^2 = 4 \\
4 = 4 \quad 8 \neq 4 \quad 4 = 4
\]
(0, 2) and \((\sqrt{2}, \sqrt{2})\) are on the graph of the equation.

19. \(y = 2x + 8 \)
\[
x\text{-intercept:} \quad y\text{-intercept:} \\
0 = 2x + 8 \quad y = 2(0) + 8 \\
2x = -8 \quad y = 8 \\
x = -4
\]
The intercepts are \((-4, 0)\) and \((0, 8)\).

23. \(y = -x^2 + 4 \)
\[
x\text{-intercepts:} \quad y\text{-intercepts:} \\
0 = -x^2 + 4 \quad y = -(0)^2 + 4 \\
x^2 = 4 \quad y = 4 \\
x = \pm 2
\]
The intercepts are \((-2, 0)\), \((2, 0)\), and \((0, 4)\).
29.
(b) = (-3, 4)
(c) = (-3, -4)
(a) = (3, -4)

31.
(-2, 1)
(b) = (2, 1)
(a) = (-2, -1)
(c) = (2, -1)
41. a. Intercepts: \((-\frac{\pi}{2}, 0)\), \((0,1)\), and \((\frac{\pi}{2}, 0)\)

b. Symmetric with respect to the y-axis.

43. a. Intercepts: \((0,0)\)

b. Symmetric with respect to the x-axis.

45. a. Intercepts: \((-2,0)\), \((0,0)\), and \((2,0)\)

b. Symmetric with respect to the origin.
55. \(y^2 = x + 4 \)
 x-intercepts:
 \(0^2 = x + 4 \)
 \(0 = x \)
 \(-4 = x \)
 y-intercepts:
 \(y^2 = 0 + 4 \)
 \(y^2 = 4 \)
 \(y = \pm 2 \)

 The intercepts are \((-4,0), (0,-2)\) and \((0,2)\).

 Test x-axis symmetry: Let \(y = -y \)
 \((-y)^2 = x + 4 \)
 \(y^2 = x + 4 \) same

 Test y-axis symmetry: Let \(x = -x \)
 \(y^2 = -x + 4 \) different

 Test origin symmetry: Let \(x = -x \) and \(y = -y \)
 \((-y)^2 = -x + 4 \)
 \(y^2 = -x + 4 \) different

 Therefore, the graph will have x-axis symmetry.

57. \(y = \sqrt[3]{x} \)
 x-intercepts:
 \(0 = \sqrt[3]{x} \)

 The only intercept is \((0,0)\).

 Test x-axis symmetry: Let \(y = -y \)
 \(-y = \sqrt[3]{x} \) different

 Test y-axis symmetry: Let \(x = -x \)
 \(y = \sqrt[3]{-x} = -\sqrt[3]{x} \) different

 Test origin symmetry: Let \(x = -x \) and \(y = -y \)
 \(-y = \sqrt[3]{-x} = -\sqrt[3]{x} \)
 \(y = \sqrt[3]{x} \) same

 Therefore, the graph will have origin symmetry.

59. \(x^2 + y - 9 = 0 \)
 x-intercepts:
 \(x^2 - 9 = 0 \)
 \(x^2 = 9 \)
 \(x = \pm 3 \)
 y-intercepts:
 \(0^2 + y - 9 = 0 \)
 \(y = 9 \)

 The intercepts are \((-3,0), (3,0),\) and \((0,9)\).

 Test x-axis symmetry: Let \(y = -y \)
 \(x^2 - y - 9 = 0 \) different

 Test y-axis symmetry: Let \(x = -x \)
 \((-x)^2 + y - 9 = 0 \)
 \(x^2 + y - 9 = 0 \) same

 Test origin symmetry: Let \(x = -x \) and \(y = -y \)
 \((-x)^2 - y - 9 = 0 \)
 \(x^2 - y - 9 = 0 \) different

 Therefore, the graph will have y-axis symmetry.
65. \(y = x^2 - 3x - 4 \)
 x-intercepts:
 \[0 = x^2 - 3x - 4 \]
 \[0 = (x - 4)(x + 1) \]
 \(x = 4 \) or \(x = -1 \)
 y-intercepts:
 \[y = 0^2 - 3(0) - 4 \]
 \(y = -4 \)

The intercepts are \((4,0)\), \((-1,0)\), and \((0,-4)\).

Test x-axis symmetry: Let \(y = -y \)
\[-y = x^2 - 3x - 4 \text{ different} \]

Test y-axis symmetry: Let \(x = -x \)
\[y = (-x)^2 - 3(-x) - 4 \]
\[y = x^2 + 3x - 4 \text{ different} \]

Therefore, the graph has none of the indicated symmetries.

69. \(y = \frac{-x^3}{x^2 - 9} \)
 x-intercepts:
 \[0 = \frac{-x^3}{x^2 - 9} \]
 \(-x^3 = 0 \)
 \(x = 0 \)

y-intercepts:
 \[y = \frac{-0^3}{0^2 - 9} = \frac{0}{-9} = 0 \]

The only intercept is \((0,0)\).

Test x-axis symmetry: Let \(y = -y \)
\[-y = \frac{-x^3}{x^2 - 9} \]
\[y = \frac{x^3}{x^2 - 9} \text{ different} \]

Test y-axis symmetry: Let \(x = -x \)
\[y = \frac{-(-x)^3}{(-x)^2 - 9} \]
\[y = \frac{x^3}{x^2 - 9} \text{ different} \]

Test origin symmetry: Let \(x = -x \) and \(y = -y \)
\[-y = \frac{-(-x)^3}{(-x)^2 - 9} \]
\[y = \frac{x^3}{x^2 - 9} \text{ same} \]

Therefore, the graph has origin symmetry.